A clonal analysis of neural progenitors during axolotl spinal cord regeneration reveals evidence for both spatially restricted and multipotent progenitors.

نویسندگان

  • Levan McHedlishvili
  • Hans H Epperlein
  • Anja Telzerow
  • Elly M Tanaka
چکیده

Complete regeneration of the spinal cord occurs after tail regeneration in urodele amphibians such as the axolotl. Little is known about how neural progenitor cells are recruited from the mature tail, how they populate the regenerating spinal cord, and whether the neural progenitor cells are multipotent. To address these issues we used three types of cell fate mapping. By grafting green fluorescent protein-positive (GFP(+)) spinal cord we show that a 500 microm region adjacent to the amputation plane generates the neural progenitors for regeneration. We further tracked single nuclear-GFP-labeled cells as they proliferated during regeneration, observing their spatial distribution, and ultimately their expression of the progenitor markers PAX7 and PAX6. Most progenitors generate descendents that expand along the anterior/posterior (A/P) axis, but remain close to the dorsal/ventral (D/V) location of the parent. A minority of clones spanned multiple D/V domains, taking up differing molecular identities, indicating that cells can execute multipotency in vivo. In parallel experiments, bulk labeling of dorsally or ventrally restricted progenitor cells revealed that ventral cells at the distal end of the regenerating spinal cord switch to dorsal cell fates. Analysis of PAX7 and PAX6 expression along the regenerating spinal cord indicated that these markers are expressed in dorsal and lateral domains all along the spinal cord except at the distal terminus. These results suggest that neural progenitor identity is destabilized or altered in the terminal vesicle region, from which clear migration of cells into the surrounding blastema is also observed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Proliferation Study of hiPS Cell-Derived Neuronal Progenitors on Poly-Caprolactone Scaffold

Introduction: The native inability of nervous system to regenerate, encourage researchers to consider neural tissue engineering as a potential treatment for spinal cord injuries. Considering the suitable characteristics of induced pluripotent stem cells (iPSCs) for tissue regeneration applications, in this study we investigated the adhesion, viability and proliferation of neural progenitors (de...

متن کامل

Spatial Distribution of Prominin-1 (CD133) – Positive Cells within Germinative Zones of the Vertebrate Brain

BACKGROUND In mammals, embryonic neural progenitors as well as adult neural stem cells can be prospectively isolated based on the cell surface expression of prominin-1 (CD133), a plasma membrane glycoprotein. In contrast, characterization of neural progenitors in non-mammalian vertebrates endowed with significant constitutive neurogenesis and inherent self-repair ability is hampered by the lack...

متن کامل

The adult spinal cord harbors a population of GFAP-positive progenitors with limited self-renewal potential.

Adult neural stem cells (aNSCs) of the forebrain are GFAP-expressing cells that are intercalated within ependymal cells of the subventricular zone (SVZ). Cells showing NSCs characteristics in vitro can also be isolated from the periaqueductal region in the adult spinal cord (SC), but contradicting results exist concerning their glial versus ependymal identity. We used an inducible transgenic mo...

متن کامل

Characterization of Proliferating Neural Progenitors after Spinal Cord Injury in Adult Zebrafish

Zebrafish can repair their injured brain and spinal cord after injury unlike adult mammalian central nervous system. Any injury to zebrafish spinal cord would lead to increased proliferation and neurogenesis. There are presences of proliferating progenitors from which both neuronal and glial loss can be reversed by appropriately generating new neurons and glia. We have demonstrated the presence...

متن کامل

Adult spinal cord stem cells generate neurons after transplantation in the adult dentate gyrus.

The adult rat spinal cord contains cells that can proliferate and differentiate into astrocytes and oligodendroglia in situ. Using clonal and subclonal analyses we demonstrate that, in contrast to progenitors isolated from the adult mouse spinal cord with a combination of growth factors, progenitors isolated from the adult rat spinal cord using basic fibroblast growth factor alone display stem ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 134 11  شماره 

صفحات  -

تاریخ انتشار 2007